Refinable functions for dilation families

نویسنده

  • Philipp Grohs
چکیده

We consider a family of d×d matrices We indexed by e ∈ E where (E,μ) is a probability space and some natural conditions the family (We)e∈E are satisfied. The aim of this paper is to develop a theory of continuous, compactly supported functions φ : R → C which satisfy a refinement equation of the form φ(x) = Z

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sinister View of Dilation Equations

We present a technique for studying refinable functions which are compactly supported. Refinable functions satisfy dilation equations and this technique focuses on the implications of the dilation equation at the edges of the support of the refinable function. This method is fruitful, producing results regarding existence, uniqueness, smoothness and rate of growth of refinable functions.

متن کامل

Refinable Functions with Non-integer Dilations

Refinable functions and distributions with integer dilations have been studied extensively since the pioneer work of Daubechies on wavelets. However, very little is known about refinable functions and distributions with non-integer dilations, particularly concerning its regularity. In this paper we study the decay of the Fourier transform of refinable functions and distributions. We prove that ...

متن کامل

Some Smooth Compactly Supported Tight Wavelet Frames with Vanishing Moments

Let A ∈ Rd×d, d ≥ 1 be a dilation matrix with integer entries and | detA| = 2. We construct several families of compactly supported Parseval framelets associated to A having any desired number of vanishing moments. The first family has a single generator and its construction is based on refinable functions associated to Daubechies low pass filters and a theorem of Bownik. For the construction o...

متن کامل

Orthogonality Criteria for Compactly Supported Refinable Functions and Refinable Function Vectors

A refinable function φ(x) : Rn → R or, more generally, a refinable function vector 8(x) = [φ1(x), . . . , φr (x)]T is an L1 solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φj (x − α) : α ∈ Zn, 1 ≤ j ≤ r} form an orthogonal set of functions in L2(Rn)...

متن کامل

A Family of Nonseparable Scaling Functions and Compactly Supported Tight Framelets

Given integers b and d, with d > 1 and |b| > 1, we construct even nonseparable compactly supported refinable functions with dilation factor b that generate multiresolution analyses on L2(R). These refinable functions are nonseparable, in the sense that they cannot be expressed as the product of two functions defined on lower dimensions. We use these scaling functions and a slight generalization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2013